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I am wiser than this person; for it is likely that neither of us knows
anything fine and good, but he thinks he knows something when he
does not know it, whereas I, just as I do not know, do not think I know,
either. I seem, then, to be wiser than him in this small way, at least:
that what I do not know, I do not think I know, either.

Plato, The Apology of Socrates, 21d

To err is human. All human knowledge is fallible and therefore un-
certain. It follows that we must distinguish sharply between truth
and certainty. That to err is human means not only that we must con-
stantly struggle against error, but also that, even when we have taken
the greatest care, we cannot be completely certain that we have not
made a mistake.

Karl Popper, ‘Knowledge and the Shaping of Reality’
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Abstract Summary: Type 2 diabetes (T2D) is a complex disease monitored poorly by
episodic assays like HbAlc. This prospective cohort study analyzed multimodal data
(including CGM, genetics, and microbiome) from 1,137 participants (347 deeply
phenotyped) across normoglycemic, prediabetic, and T2D states, finding significant
differences in glucose spike metrics and demonstrating that a multimodal approach

improves T2D risk stratification beyond HbA1c alone.

Key Methodology: Prospective, site-less clinical trial (PROGRESS cohort) collect-
ing multimodal data (CGM, EHR, Fitbit, food logging, HbAlc, genomics, gut micro-
biome) from 347 deeply phenotyped individuals; Spearman’s rank correlation anal-
ysis; Multimodal binary classification model (XGBoost) for T2D risk assessment,

validated on an independent cohort (HPP).

Research Question: How do multimodal data (diet, genetics, exercise, sleep, gut
microbiome) correlate with and determine abnormal glucose spikes across different
diabetes states (normoglycemia, prediabetes, T2D), and can this data be leveraged
to define multimodal glycemic risk profiles that improve T2D prevention, diagnosis,

and treatment?
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Summary

Is It Credible?

Carletti et al. present a prospective, decentralized clinical trial designed to evalu-
ate whether multimodal artificial intelligence can characterize glucose homeosta-
sis better than traditional episodic assays. By collecting data from continuous glu-
cose monitors (CGM), wearable activity trackers, food logs, and biological samples
(microbiome, genomics) from 347 individuals, the authors aim to capture the “full
complexity” of Type 2 Diabetes (T2D) (p. 3121). The study’s central proposition is
that this “multimodal glycemic risk profile” offers a more granular and informative
assessment of an individual’s metabolic health than HbAlc alone, particularly for
stratifying risk among prediabetic individuals. The authors report a high degree of
accuracy, with their model achieving an area under the curve (AUC) of 0.96 in the

primary cohort and 0.90 in an external validation cohort (p. 3123).

The study is methodologically ambitious and succeeds in demonstrating the feasi-
bility of decentralized, sensor-based clinical trials. The ability to recruit a diverse
cohort and collect complex physiological data remotely is a significant contribution
to the literature on digital health. However, the credibility of the specific biological
and clinical claims is tempered by several structural limitations. The most pressing
issue is the misalignment between the study’s cross-sectional design and its prog-
nostic framing. The authors frequently describe their model as a tool for “prediction
of T2D” and for identifying individuals “at risk of progressing into the pathological
stage” (p. 3123). Yet, the model is trained on a snapshot of data to classify current
disease status, not future progression. The “risk profile” generated is effectively a
similarity score to the T2D phenotype found in the training set. While this is a valu-
able metric, it does not inherently validate the prediction of future disease onset, a

distinction that requires longitudinal follow-up.



Furthermore, the biological specificity of the model is challenged by the composition
of the T2D cohort. A majority of these participants (64 out of 94) were taking antihy-
perglycemic medications (p. 3123). Consequently, the machine learning model may
be detecting the physiological signature of medication use—or a “medicated T2D”
phenotype—rather than the unperturbed pathophysiology of the disease. The au-
thors acknowledge that medication use “might potentially result in underestimated
differences” (p. 3126) and attempt a sub-analysis on unmedicated individuals, but
the small sample size limits the statistical power of this check. This confounding fac-
tor complicates the interpretation of the feature importance analysis, as the model’s
reliance on specific glucose spike metrics may be influenced by drug mechanisms

rather than natural disease progression.

The “multimodal” nature of the model also warrants scrutiny regarding the contri-
bution of its components. While the narrative emphasizes the integration of diverse
data streams including microbiome and genomics, the supplementary analysis re-
veals that the predictive performance is driven almost entirely by the wearable sensor
data (CGM and Fitbit). The addition of microbiome, genomics, food intake, or elec-
tronic health record variables did not yield statistically significant improvements in
the binary classification task (Supplementary Information, p. 1). This suggests that
while the study validates the power of continuous physiological monitoring, the ne-
cessity of the more expensive and complex ‘omics’ data for this specific classification

task is not established by the results.

Finally, the reliability of the lifestyle correlations is undermined by data quality is-
sues inherent to self-reporting. The authors transparently admit that accurate report-
ing of food intake was “challenging” for participants (p. 3126). This likely explains
the counter-intuitive finding that higher carbohydrate intake was associated with
faster spike resolution (p. 3123), a correlation that contradicts established physiolog-
ical understanding and suggests significant noise or bias in the dietary logs. Despite

these limitations, the external validation in the Human Phenotype Project (HPP) co-



hort remains a strong point. Achieving an AUC of 0.90 despite systematic differences
in CGM devices (Dexcom vs. FreeStyle Libre) and sampling rates suggests that the
core signal captured by the model—likely driven by glycemic variability—is robust

and generalizable (pp. 3128-3129).

The Bottom Line

Carletti et al. convincingly demonstrate that wearable sensors (CGM and activity
trackers) can classify diabetes status with high accuracy, outperforming standard
demographic models. However, the claim that this approach predicts future pro-
gression is not supported by the cross-sectional design, and the biological “risk pro-
files” are likely confounded by the high prevalence of medication use in the diabetic
cohort. The study is a strong proof-of-concept for remote digital monitoring, but the
added value of integrating expensive microbiome and genomic data for this specific

diagnostic purpose appears negligible.



Potential Issues

Model misalignment in risk assessment: The study develops a machine learning
model to classify individuals as either normoglycemic or having Type 2 Diabetes
(T2D) based on cross-sectional data. However, the article consistently frames this
diagnostic classification tool as a prognostic instrument for risk assessment. For in-
stance, the authors claim the model improves “the identification of prediabetic indi-
viduals at risk of progressing into the pathological stage of the disease” and assesses
“an individual’s potential progression to T2D” (p. 3123). This language implies a
predictive capacity for future events, but the study’s cross-sectional design, which
captures a single snapshot in time, cannot validate such claims. The “risk profile”
generated by the model is a measure of an individual’s similarity to the current T2D
phenotype observed in the training data, not a validated predictor of future disease
onset. While the authors acknowledge in the discussion that the method will only
“potentially serve as a foundation for future longitudinal studies,” the prognostic
framing in the abstract and results may overstate the model’s demonstrated capabil-

ities (p. 3126).

Confounding from antihyperglycemic medication: The machine learning model
was trained to distinguish between normoglycemic individuals and those with T2D,
yet a substantial portion of the T2D cohort (64 out of 94 participants) were taking an-
tihyperglycemic medications (p. 3123). These medications are designed to alter glu-
cose metabolism, meaning the model may be learning to identify a “medicated T2D”
phenotype rather than the unperturbed biological signature of the disease. This in-
troduces a significant confound that could affect the model’s feature importance and
its applicability to unmedicated individuals. The authors attempt to address this by
performing a sub-analysis comparing medicated and unmedicated T2D individuals
(n=30), finding no statistically significant differences in glucose metrics. However,

this comparison is likely underpowered due to the small sample size of the unmedi-



cated group. The authors acknowledge this limitation in the discussion, noting that
medication use “might potentially result in underestimated differences in glucose
spike metrics between diabetics and non-diabetics,” but this potential confound re-

mains a central challenge to the interpretation of the model’s findings (p. 3126).

Systematic mismatches in external validation data: The study’s claim of external
validation in the Human Phenotype Project (HPP) cohort is potentially weakened
by systematic differences in data collection methodologies compared to the primary
PROGRESS cohort. First, the core continuous glucose monitoring (CGM) data was
collected with different devices: the PROGRESS cohort used Dexcom G6 monitors
(5-minute sampling), while the HPP cohort used FreeStyle Libre Pro devices (15-
minute sampling) (pp. 3128-3129). This difference in temporal resolution could af-
tect the ability to detect the rapid glucose excursions that define the study’s “spike”
metrics. Second, the benchmark comparator, HbAlc, was measured with lower pre-
cision in the validation cohort. In the PROGRESS cohort, HbA1lc was measured from
a contemporaneous blood sample, whereas in the HPP cohort, it was extracted from
electronic health records and could be up to 90 days removed from the CGM moni-
toring period (pp. 3128-3129). The authors are transparent about these limitations,
noting that different CGM devices “might lead to biases” (p. 3126) and that the
HbA1lc time mismatch “can potentially cause inaccuracies in the analysis” (p. 3129).
Nonetheless, these domain shifts introduce non-random measurement differences

that may compromise the robustness of the validation.

High risk of selection bias and limited generalizability: The study’s final analysis
is based on 347 participants from an initial enrollment of 1,137, representing a 69%
attrition rate (p. 3122; Extended Data Fig. 1). The primary reason for exclusion was
insufficient CGM data, indicating that a large portion of the initial cohort did not ad-
here to the demanding monitoring protocol. The authors checked for selection bias
by comparing the included and excluded groups on age and sex and found no signif-

icant differences (p. 3122). However, this check did not extend to other potentially



important variables like BMI, socioeconomic status, or digital literacy. It is plausible
that participants who successfully completed the protocol are systematically differ-
ent from those who did not, potentially being more health-conscious, motivated, or
technologically adept. This “compliant user bias” may limit the generalizability of

the findings to the broader population.

Reliance on self-reported data of acknowledged low quality: The analysis of
lifestyle factors relies on self-reported data, particularly for food intake, which the
authors concede was of questionable accuracy. They state that “accurate reporting
of food intake for participants in real-world conditions... proved challenging (in
adherence and accuracy) for many” (p. 3126). Despite this significant data quality
issue, dietary variables are included in the correlation analyses and contribute to
a key finding: a statistically significant negative correlation between carbohydrate
intake and spike resolution (p. 3123). This suggests, counter-intuitively, that higher
carbohydrate intake is associated with faster glucose absorption. Reporting a key
finding based on data acknowledged to be unreliable calls into question the validity

of conclusions related to diet and potentially other self-reported lifestyle factors.

Marginal contribution of most “‘omics” data streams to model performance: The ar-
ticle’s central narrative emphasizes the superiority of a “multimodal” approach that
integrates diverse data streams. However, a supplementary analysis of the model’s
performance suggests that much of the predictive power is derived from wearable
sensor data, with limited contribution from other modalities. The analysis shows
that while CGM and Fitbit data provided statistically significant improvements over
a base model of demographic variables, “there were no statistically significant im-
provements observed when adding microbiome variables... genomics variables...
food intake variables... or EHR variables” individually (Supplementary Information,
p. 1). This finding suggests that the high performance of the final model is driven
primarily by continuous physiological monitoring, which may temper the broader

claims about the necessity of integrating complex and costly ‘omics” data for this



specific classification task.

Omission of socioeconomic confounders in correlation analysis: The study inves-
tigates the associations between glucose spike metrics and various lifestyle and bi-
ological factors while controlling for age, sex, and polygenic risk score (p. 3123).
However, the analysis does not adjust for potential confounding by socioeconomic
status (SES), such as education level or income. SES is known to be strongly asso-
ciated with many of the variables under investigation, including diet, physical ac-
tivity, and gut microbiome composition. The authors collected data on education
and rurality as part of their UBR definition but did not include these as covariates
in the correlation models (p. 3122). The omission of SES controls means that some
of the reported associations, particularly those related to lifestyle factors, could be

influenced by unmeasured socioeconomic differences among participants.

Presentation and transparency issues: Several aspects of the study’s presentation
could be clarified. First, the claim of a “diverse cohort with 48.1% of participants
self-identified as UBR” (p. 3125) relies on a broad definition of “Underrepresented
in Biomedical Research” that includes age over 65 and rural residence. While the
authors are transparent in Table 1, this framing may obscure the low representation
of key racial and ethnic minority groups, such as Black (3.2%) and Hispanic (3.5%)
participants (p. 3123, Table 1). Second, the article refers to the HPP cohort as “inde-
pendent” (p. 3123), which is true in the sense of being a separately collected dataset
from a different population. However, the significant overlap in authorship and in-
stitutional affiliations between the two projects is a nuance worth considering when
assessing the rigor of the validation, a fact the authors disclose in the competing in-
terests section (p. 3131). Finally, a minor clerical error exists between the main text,
which states 412 participants shared CGM data, and Extended Data Fig. 1, which
indicates this number was 406 (p. 3122; Extended Data Fig. 1).
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Future Research

Longitudinal validation of risk scores: To substantiate the claim that the multi-
modal model predicts disease progression, future research must move beyond cross-
sectional classification. A longitudinal study following drug-naive prediabetic indi-
viduals over several years is required to determine if the “glycemic risk profile” at
baseline actually correlates with the time-to-onset of T2D. This would transform the

model from a sophisticated diagnostic tool into a genuine prognostic instrument.

Deconfounding medication effects: Future work should prioritize training classi-
fication models exclusively on unmedicated T2D populations or individuals with
new-onset diabetes prior to treatment initiation. This would ensure that the learned
features represent the underlying pathology of the disease rather than the pharma-
codynamics of antihyperglycemic agents. If recruiting a large unmedicated cohort
is not feasible, future analyses could employ causal inference methods to adjust for

the treatment effect, provided the sample size is sufficient.

Cost-benefit analysis of data modalities: Given that the supplementary results in-
dicated no significant performance gain from microbiome, genomics, or food logs,
tuture studies should rigorously evaluate the cost-effectiveness of the multimodal
approach. Research should aim to identify the “minimum viable dataset”—likely a
combination of CGM and actigraphy—that achieves comparable accuracy to the full
multimodal suite. This would have significant implications for the scalability and

clinical implementation of such screening tools.
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